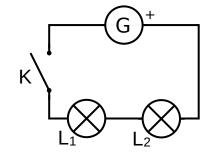

- **1.** Sur le schéma ci-contre, ajouter au crayon un voltmètre pour mesurer la tension aux bornes de la lampe L_1 .
 - ► Réaliser le circuit ci-contre générateur éteint.
 - ☐ Faire valider par le professeur
- ► Compléter le tableau en réalisant les mesures appropriées.
- **2.** Que devient la valeur de la tension si on inverse le branchement des fils ?

3. Compléter le texte suivant :

Quand l'interrupteur est ______, la tension à ses bornes vaut 0 V.

Quand une lampe n'est pas traversée par un courant, sa tension vaut ______

Même lorsqu'il n'est pas dans le circuit, la tension aux bornes du générateur vaut_____.


⊙ 5. Trouver une relation mathématique entre la tension aux bornes du générateur et les tensions aux bornes des récepteurs.

Tension aux bornes de	К	L ₁	L ₂	G
Interrupteur fermé	V	V	V	V
Interrupteur ouvert	V	V	V	V

tensions relevées aux bornes des différents dipôles

Chap. 7 TP 1 MESURES DE TENSIONS

- **1.** Sur le schéma ci-contre, ajouter au crayon un voltmètre pour mesurer la tension aux bornes de la lampe L_1 .
 - ► Réaliser le circuit ci-contre générateur éteint.
 - ☐ Faire valider par le professeur
- ► Compléter le tableau en réalisant les mesures appropriées.
- **2.** Que devient la valeur de la tension si on inverse le branchement des fils ?

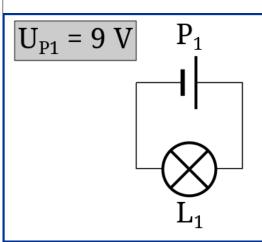
3. Compléter le texte suivant :

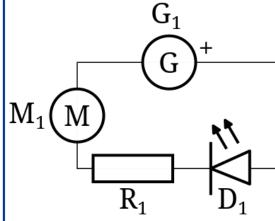
Quand l'interrupteur est ______, la tension à ses bornes vaut 0 V.

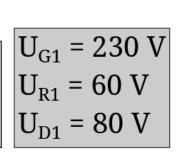
Quand une lampe n'est pas traversée par un courant, sa tension vaut ______.

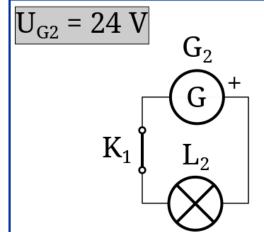
Même lorsqu'il n'est pas dans le circuit, la tension aux bornes du générateur

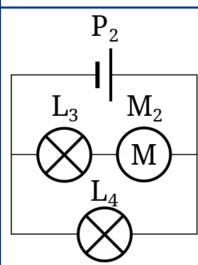
vaut_____.

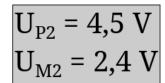

♦ 5. Trouver une relation mathématique entre la tension aux bornes du générateur et les tensions aux bornes des récepteurs.

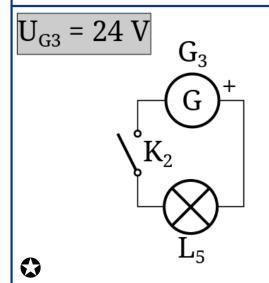

Tension aux bornes de	К	L ₁	L ₂	G
Interrupteur fermé	V	V	V	V
Interrupteur ouvert	V	V	V	V

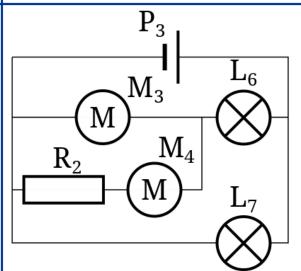

tensions relevées aux bornes des différents dipôles


- 1. Entourer en rouge le générateur, en vert les récepteurs.
- 2. Repérer la boucle dans laquelle vous allez appliquer la loi des boucles. Déterminer les tensions inconnues en utilisant la loi des boucles


		_
U_{L1}	U_{L4}	
U _{M1}	U _{K2}	
U _{K1}	U_{L5}	
U_{L2}	U_{P3}	
U_{L3}	U _{мз}	



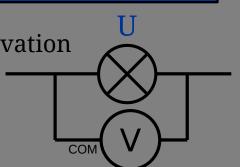




$\overline{\mathrm{U}_{\mathrm{L6}}}$	=	2,1	V
U_{R2}	=	1,6	V
$\rm U_{L7}$	=	4,5	V

Grandeur	Courant	Tension	
signification physique	débit d'électrons	«force» qui freine ou qui pousse le courant.	
mesure	se mesure avec un ampèremètre placé en série	se mesure avec un voltmètre placé en dérivation	
appareil de mesure	—A COM	—V COM	
loi associée	$\begin{array}{c c} \hline \text{loi des nœuds} \\ \hline \\ ici, \\ i_1 = i_2 + i_3 \\ \hline \\ i_2 \\ \hline \end{array}$	loi des boucles U_{G} U_{G} $U_{G} = U_{1} + U_{2}$ $U_{G} = U_{3}$ U_{1} U_{2} U_{3}	

Grandeur	Courant	Tension	
signification physique	débit d'électrons	«force» qui freine ou qui pousse le courant.	
mesure	se mesure avec un ampèremètre placé en série	se mesure avec un voltmètre placé en dérivation	
appareil de mesure	—A COM	—V COM	
loi associée	$\begin{array}{c c} \hline loi \ des \ nœuds \\ \hline \\ ici, \\ i_1 = i_2 + i_3 \\ \hline \\ i_2 \\ \hline \end{array}$	$\begin{array}{c c} \hline loi \ des \ boucles \\ \hline \\ Ici, \\ U_G = U_1 + U_2 \\ U_G = U_3 \\ \hline \\ \end{array}$	



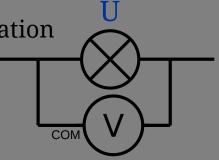
symbole: U

unité: volt (V)

mesure : voltmètre branché en dérivation

La borne COM doit être orientée vers la borne – de la pile.

« combien ça pousse »

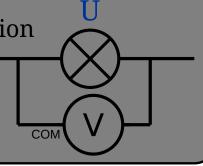

Tension

symbole: U

unité: volt (V)

mesure : voltmètre branché en dérivation

La borne COM doit être orientée vers la borne – de la pile.

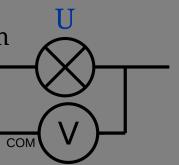

ension

symbole: U

unité: volt (V)

mesure : voltmètre branché en dérivation

La borne COM doit être orientée vers la borne – de la pile.


ension

symbole: U

unité: volt (V)

mesure : voltmètre branché en dérivation

La borne COM doit être orientée vers la borne – de la pile.

